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Abstract
A composite of graphene and carbon nanotubes has been synthesized and characterized for
application as supercapacitor electrodes. By coating the nanostructured active material of
Co(OH)2 onto one electrode, the asymmetric supercapacitor has exhibited a high specific
capacitance of 310 F g−1, energy density of 172 Wh kg−1 and maximum power density of
198 kW kg−1 in ionic liquid electrolyte EMI-TFSI.
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1. Introduction

The supercapacitor is a promising energy storage device since
it can deliver a power density several orders of magnitude
higher than a lithium-ion battery, which has been the most
advanced energy storage device up to now [1, 2]. In addition,
the excellent cycle life and its safety in operation make it
highly competitive in many applications such as in electric
and hybrid vehicles [3]. Some of the recently developed
nanostructured carbon structures, such as carbon nanobeads,
carbon nanotubes (CNTs), carbon nanohorns and especially
graphene, have a high specific surface area, high electrical
conductivity and good chemical stability [4–10]. The
theoretical specific surface area of graphene is 2630 m2 g−1,
which is much larger than that of the activated carbon and
CNTs that are usually used in electrochemical double-layer
capacitors, although the Brunauer–Emmett–Teller specific
surface area of activated carbon could reach as high as
3000 m2 g−1, largely owing to the presence and contributions
of functional groups in activated carbon [3]. Graphene can
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interface with electrolyte ions on both of its sides and has
the best structure for energy storage (figure 1(a)). However,
there are also issues with pristine graphene electrodes.
Firstly, the chemically reduced graphene usually has an
electrical conductivity of about 100–200 S m−1, which is
two orders of magnitude lower than that of conductive
single-walled CNTs (usually 10 000 S m−1) [11]. Secondly,
like most nanomaterials, graphene is also prone to irreversible
agglomeration or to restack into graphite through van der
Waals interactions during the drying process that is used to
obtain it. In this case, it would be difficult for the electrolyte
ions to gain access to the inner layers to form electrochemical
double layers if the graphene sheets are stacked together.
Instead, the electrolyte ions could only accumulate on the
top and the bottom surfaces of the graphene stack, which
would then lead to a lower specific capacitance since the
stacked material cannot be fully utilized, as illustrated in
figure 1(d) [12]. Thirdly, a graphene electrode cannot function
well without a binder, which would usually reduce the specific
capacitance.

We have recently studied and developed a graphene–CNT
composite with a three-dimensional porous network structure
that has exhibited record-high energy density and power
density when used in an electrochemical double-layer
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Figure 1. Schematic of graphene-based electrodes. (a) Single-layer graphene. Single-layer graphene has the highest surface area of
2630 m2 g−1, which can interface with electrolyte ions on both sides of the graphene. (b) Few-layer graphene. Graphene nanosheets are
likely to agglomerate through van der Waals interactions during the drying process. It would be difficult for electrolyte ions to access the
ultra-small pores, especially for larger ions such as those in an organic electrolyte, or at a high charging rate. (c) Graphene–CNT composite
is coated with vertically aligned Co(OH)2 nano-sheets by cathodic in situ deposition to fabricate a graphene–CNT–Co(OH)2 composite.
(d) Graphene–CNT composite. CNTs can serve as a spacer between the graphene nanosheets to provide rapid diffusion pathways for the
electrolyte ions; moreover, they can increase the electrical conduction. The CNTs also serve as a binder to hold the graphene nanosheets
together, preventing the disintegration of the composite in electrolyte.

capacitor [13]. However, the specific capacitance as well as
the energy density will be further increased if we can decorate
the graphene–CNT composite structure with nanostructured
active materials such as transition metal oxides, hydroxides
or conductive polymers. Among the active materials, metal
oxides and hydroxides have been considered the most
promising for electrochemical supercapacitors since they
often show an extremely high specific capacitance [14–21].
Cobalt hydroxide (Co(OH)2) is an excellent example material
due to its layered structure with large internal spaces for
fast insertion and desertion of electrolyte ions [22]. Its
high theoretical specific capacitance of 3458 F g−1 has also
made it a very attractive active material for pseudocapacitors
[8, 11, 23–27]. However, metal hydroxides often suffer from
high electrical resistance because of the chemical nature of the
material. In addition, the thick coating of active material also
contributes to a poor cyclability.

We therefore designed a Co(OH)2 nano-sheet–decorated
graphene–CNT composite structure which is shown schemati-
cally in figure 1. First, we use suspensions of graphene and
single-walled CNTs to produce a graphene–CNT composite
by sonication and vacuum filtration. The graphene–CNT
composite is designed to have high conductivity, chemical
stability and a three-dimensional structure with high porosity,
as illustrated in figure 1(d). The porous structure of the
graphene–CNT composite is to facilitate the diffusion of
the electrolyte into electrodes to provide channels for rapid

ion transport. The vertically aligned Co(OH)2 nano-sheets
are then coated onto the graphene–CNT composite by
electrodeposition. The Co(OH)2-coated graphene–CNT
composite electrodes are utilized binder-free. The vertically
aligned Co(OH)2 nano-sheets can further shorten the ion
diffusion path. The nano-structured active material can also
increase the efficiency of usage of materials since only the
part within a few nanometers from the surface of the active
material can take part in the redox reactions and contribute to
the actual device capacitance.

2. Experimental details

2.1. Graphene oxide

Graphene oxide was synthesized using a modified Hummers–
Offeman method from graphite in our experiment [28].
Graphite and NaNO3 were first mixed together in a flask
before H2SO4 was added to the flask, which was kept and
stirred in an ice bath. Potassium permanganate was then added
to the suspension. The color of the suspension would become
bright brown. After H2O2 was added to dilute the suspension,
the mixture was finally washed by rinsing with 5% HCl and
demonized water. After centrifugation, filtration and drying in
a vacuum, graphene oxide was obtained in the form of a black
powder.
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Figure 2. Morphological characterization of graphene-based structures. (a) TEM image of as-synthesized graphene at low magnification
showing several overlapping graphene flakes. (b) TEM image of as-synthesized graphene at high magnification revealing the number of
graphene layers in the few-layer graphene structure. (c) SEM image of a graphene–CNT composite with vertically aligned Co(OH)2

nanosheets’ coating at low magnification. (d) SEM image of Co(OH)2 coating at high magnification. The thickness of the Co(OH)2

nanosheet is approximately 10 nm.

2.2. Reduction of graphene oxide

The graphene oxide suspension was heated to 100 ◦C
and hydrazine hydrate was added to the suspension. The
suspension was then reduced and black powders were
collected by filtration. The obtained material was then
washed using distilled water again to remove the excessive
hydrazine and was redistributed into water for sonication and
centrifugation. The final graphene material was collected by
vacuum filtration.

2.3. Graphene–CNT–Co(OH)2 composite

To make the graphene–CNT–Co(OH)2 composite, graphene
and CNTs were first dispersed and mixed in ethanol to
obtain a uniform graphene–CNT composite film by vacuum
filtration. The electrodeposition of Co(OH)2 nano-sheets was
conducted using a three-electrode system, and a platinum
sheet (1 × 2 cm2) was used as the counter electrode. Cathodic
deposition was controlled by an potentiostat in 0.1 M CoCl2
electrolyte containing 10% ethanol [29]. The Co(OH)2

nano-sheets were synthesized in two steps: (i) the nucleation
of Co(OH)2, performed at a constant current at room
temperature; and (ii) the growth of the Co(OH)2 nano-
structures under a constant current.

2.4. Electrochemical and structural characterization

The electrochemical properties and capacitance of the super-
capacitor electrodes were evaluated in a two-electrode setup
by cyclic voltammetry (CV), galvanostatic charge and

discharge, and electrochemical impedance spectroscopy
(EIS). The CV response of the electrodes was measured
at different scan rates varying from 10 to 100 mV s−1. The
graphene–CNT and graphene–CNT–Co(OH)2 composites
were studied in the ionic liquid of 1-ethyl-3-
methylimidazoliumbis(trifluoromethanesulfone)imide (EMI-
TFSI) with a potential window wider than 4.5 V in comparison
with Li/Li+ [30]. EIS measurements were carried out with a
dc bias sinusoidal signal of 0.005 V over the frequency range
of 100 kHz–0.1 Hz. The morphologies and nanostructure
were examined using scanning electron microscopy (SEM,
JSM-6500) and transmission electron microscopy (TEM,
JEM-2100).

3. Results and discussion

Figure 2 shows the morphologies of graphene and the
graphene–CNT–Co(OH)2 composite. Figure 2(a) displays a
TEM image of the as-synthesized graphene, in which thin
sheets of graphene are clearly resolved. A high-resolution
TEM image of graphene is shown in figure 2(b), revealing that
this few-layer graphene is flat, a feature considered essential
for achieving a high value of specific surface area. The
CNTs used in this composite structure have higher electrical
conductivity than the chemically reduced graphene, and in
effect the electrical resistance of the electrode is reduced, i.e.
the CNTs act as the ‘pathways’ for electrical conduction. In
addition, the CNTs can also serve as spacers in-between the
graphene nano-sheets to enhance electrolyte ion accessibility.
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Figure 3. TEM image and elemental mapping of Co(OH)2-coated graphene. (a) TEM image of Co(OH)2-coated few-layer graphene.
(b) Dark-field image of the same Co(OH)2-coated graphene piece combined with maps of carbon (c), oxygen (d) and cobalt (e).

Figure 2(c) is an SEM image after Co(OH)2 coating. The
vertically aligned Co(OH)2 nano-sheets were grown on
graphene quite uniformly. We controlled the thickness of the
Co(OH)2 coating by simply adjusting the coating time. This
structure is expected to improve the power performance since
the vertically aligned Co(OH)2 nano-sheets are grown directly
on the surface of graphene to ensure good contact with the
graphene. A high-resolution SEM image of the Co(OH)2

nano-sheets is given in figure 2(d), showing a uniform coating
of Co(OH)2. The thickness of the Co(OH)2 nano-sheets is
around 10 nm.

Figure 3(a) shows graphene with a Co(OH)2 coating.
We can observe that the Co(OH)2 nano-sheets are still on
the surface of the graphene after sonication was applied in
the preparation of the TEM sample, indicating that we can
make a robust composite by in situ deposition. An elemental
mapping was carried out on the same piece of sample.
Although the carbon mapping was not helpful because of the
amorphous carbon film on the copper grid (figure 3(c)), the
Co(OH)2 coating is well revealed by the elemental mapping
of oxygen and cobalt, which is shown in figures 3(d) and (e),
respectively.

The capacitance of an electrode is sensitive to the cell
configuration used for the electrochemical measurement,
and it is always significantly higher when using a
three-electrode system [31]. A two-electrode test cell was
therefore used in this work because it can provide the most
accurate measurement of the material performance of the
supercapacitor [32]. We used an ionic liquid electrolyte
EMI-TFSI for a higher operating (charging/discharging)
voltage. Figure 4(a) shows the CV curves of graphene–CNT
supercapacitor in EMI-TFSI at different scan rates ranging
from 10 to 200 mV s−1. The symmetric and hysteretic CV
loops indicate excellent charge propagation in the electrodes.
As we know, the shape of the CV loop of an ideal
capacitor should be rectangular if the contact resistance is
small. A larger resistance distorts the loop and results in
a narrower loop with an oblique angle. Figure 4(b) shows
the galvanostatic charge/discharge curves of the composite
electrode at charging currents of 1 and 2 mA. Both charging

curves show a relatively flattened plateau after 3.7 V. This is
due to the reactions with the functional groups present on the
electrode when it was charged to such a high voltage. We
obtained a specific capacitance of 310 F g−1 at 1 mA (1 A g−1)
and 100 F g−1 at 2 mA (2 A g−1) with a maximum energy
density of 172 Wh kg−1. Figure 4(c) is the Nyquist plot of
impedance collected in the frequency range between 100 kHz
and 0.01 Hz for the graphene–CNT–Co(OH)2 composite.
As expected from a supercapacitor at low frequency, the
imaginary part increases sharply and a nearly vertical line
is observed, indicating a predominantly capacitive behavior
in action. As the frequency increases, the influence of the
electrode porosities is observed as indicated by a constant
phase element typified by the Warburg curve [33]. The
EIS curve shown in figure 4(c) is nearly linear in the
low-frequency region, and has a semi-circular shape in the
high-frequency region, from which the interfacial leakage
resistance, RF, due to overcharge or faradaic redox reactions
caused by impurities or functional groups, can be deduced
with a simplistic model. The smaller the RF, the greater
the kinetic reversibility of the faradaic reactions. In a
practical supercapacitor, to a good approximation, it can
be regarded as being composed of a non-faradaic current
for electrochemical double-layer charging in parallel with
some faradaic current component through RF. We can learn
that the graphene–CNT–Co(OH)2 composite has a small
charge-transfer resistance. The equivalent series resistance
(ESR) of 8.2 � for the supercapacitor with the graphene–CNT
and the graphene–CNT–Co(OH)2 electrodes was obtained
from the Z1-intercept. The maximum power density pmax

was calculated by pmax = V 2
max/(4m RESR), where RESR is

the equivalent series resistance, m is the total weight of
the two electrodes and Vmax is the maximum charging
voltage. Using Vmax = 4 V for the EMI-TFSI electrolyte, the
obtained maximum power density for the graphene–CNT and
graphene–CNT–Co(OH)2 supercapacitor was 198 kW kg−1.
Figure 4(d) shows the cycling performance of the asymmetric
supercapacitor with a Co(OH)2 coating of 1 mg cm−2 at a
charging current density of 2 A g−1. The capacitance dropped
by 30% after 1500 cycles, showing reasonable performance
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Figure 4. Electrochemical properties of Co(OH)2 coated graphene–CNT composite. (a) CV curves of graphene–CNT–Co(OH)2 composite
at different scan rates ranging from 10 to 100 mV s−1 in EMI-TFSI electrolyte. (b) Galvanostatic charge/discharge curves of the composite
at charging currents of 1 and 2 mA. (c) Nyquist plot of EIS data of graphene–CNT–Co(OH)2 composite electrode. (d) Cycling performance
of graphene–CNT–Co(OH)2 composite at charging density of 2 A g−1.

for an asymmetric supercapacitor, where pseudocapacitance
must also have contributed to the device performance due
to the coated Co(OH)2 from the redox reaction Co(OH)2 +
TFSI− → CoOOH + HTFSI + e−.

4. Conclusions

We have fabricated graphene–CNT and graphene–CNT–
Co(OH)2 electrodes and assembled them in asymmetric
supercapacitors. The single-walled CNTs act as a conductive
spacer as well as a conductive binder in this composite
structure. A high energy density of 172 Wh kg−1 and a
maximum power density of 198 kW kg−1 were obtained.
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